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Abstract EEG, EMG and ECG signals has coincided with the
Learning theories and algorithms for both supervised and development of computing power and multivariate signal
unsupervised Neural Networks (NNs) have already been processing techniques capable of manipulating and
accepted as relevant tools to cope with difficult problems analyzing such large data sets [Akay M., 1997].
based on the processing of experimental electromagnetic The use of Independent Component Analysis
data. These kinds of problems are typically formulated as (ICA), an unsupervised learning technique which
inverse problems. In this paper, in particular, the generalizes Principal Component Analysis (PCA),
electrical signals under investigations derive from commonly implemented through Neural Network (NN)
experimental electromyogram interference patterns schemes, is proposed in this study to process
measured on human subjects by means of non-invasive experimental biomedical data. Applied to sEMG (surface
sensors (surface ElectroMyoGraphic, sEMG, data). The ElectroMyoGraphy) data, ICA results in numerous
monitoring and the analysis of dynamic sEMG data spatially-independent patterns, each associated with a
reveals important information on muscles activity and unique time-course, providing a way to separate different
can be used to clinicians for both preventing dramatic electrical signals coming from different muscle activities
illness evolution and improving athletes performance. [Jung T.P., 2000]. In contrast to the variable nature of the
The paper proposes the use of Independent Component surface EMG recorded from a single muscle in isolation,
Analysis (ICA), an unsupervised learning technique, in ICA of the sEMG from several muscles simultaneously
order to process raw sEMG data by reducing the typical allows the detection of highly reproducible components
"cross-talk" effect on the electric interference pattern for example in the sEMG of the face and the throat
measured by the surface sensors. The ICA is during swallowing and in the sEMG of arm muscles
implemented by means of a multi-layer NN scheme. during reaching movements [McKeown M.J., 2002].
Since the IC extraction is based on the assumption of The researches reported in the present study
stationarity of the involved sEMG recording, which is show important applications in the study of some
often inappropriate in the case of biomedical data, we neurological diseases, and in the monitoring of athletic
also propose a technique for dealing with non-stationary activities for improving significantly the potential of
recordings. The basic tool is the wavelet (time- athletes as well as the capabilities of normal subjects in
frequency) decomposition, that allows us to detect and daily actions, since it makes it possible, in principle, to
analyse time-varying signals. An auto-associative NN enhance motor coordination. Also, musculo-skeletal
that exploits wavelet coefficients as an input vector is disorders are the first cause of patient-physician
also used as simple detector of non-stationarity based on encounters in the industrialized countries [IEEE
a measure of reconstruction error. The proposed Engineering in Medicine and Biology, 2001 ].
approach not only yields encouraging results to the This paper is organized as follows. In Section 2
problem at hand, but suggests a general approach to the type of data coming from electrical activity of
solve similar relevant problems in some other muscles will be discussed. In Section 3 we shall propose
experimental applications of electromagnetics. the McKeown idea of motion through integration of sub-

movements [McKeown M.J., 200b]. The computational
1. Introduction model incorporating sub-movements will be presented in

Section 4. Section 5 is devoted to the proposal of NN
Most relevant medical problems are today faced schemes to implement ICA. Section 6 will report the

by processing (by visual inspection or some automatic results achieved by processing the experimental data,
means) electrical signals detected on the human body. The assumption of stationarity of the electrical signals
Evaluation of patient populations often includes the use will be relaxed in Section 7, where the wavelet approach
of ancillary tests for diagnosis and/or prognosis. Data will be proposed. Finally, some conclusions are drawn.
sets collected from these diagnostic tests, such as the
Electroencephalogram (EEG), the Electromyogram
(EMG), the Electrocardiogram (ECG) and, more 2. ElectroMyographic Data
recently, functional Magnetic Resonance Imaging
(fMRI), tend to be complex, large and high-dimensional. When skeletal muscle fibers contract, they
The trend towards digitization of the traditionally analog conduct electrical activity (action potentials, APs) that
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can be measured by electrodes affixed to the surface of progressively recover. At some stage of rehabilitation,
the skin above muscles [Akay M., 1997]. As the APs people are able to mimic normal kinematics but still
pass by the electrodes, spikes of electrical activity are complain of muscle aching and fatigue due to excessive
observed and pulses of muscle fiber contractions are muscle co-contraction.
produced. Small functional groups of muscle fibers, Intuitively, sub-movements are groups of
termed motor units (MUs), contract synchronously, muscles that have the tendency to activate together
resulting in a motor unit action potential (MUAP). To following a common neural input We assert that a sub-
sustain force, an MU is repeatedly activated by the movements is "hard-wired" by adulthood, in the sense
central nervous system several times per second. The that it may be encoded in the spinal cord as part of a
repetition, or average, firing rate is often between 5 and Central Pattern Generator (CPG), and also partly reflect
30 times per second (or faster). The electromyographic the anatomical distribution across several muscles of a
(EMG) signal is widely used as a suitable means to have single nerve root exiting the spinal cord. To suggest a
access to physiological processes involved in producing computational model of sub-movements, we initially
joint movements. The information extracted from the make the stationarity assumption. Since the EMG is an
EMG signals can be exploited in several different indirect measure of the neural command to the muscle,
applications. The typical sensors used for EMG are the Mutual Information (MI) can be used as a metric to
needle (unipolar or bipolar) sensors. The experimental infer the recordings from two EMG electrodes contain
data here analysed come from non-invasive surface EMG common neural input M. McKeown has proposed using
sensors, that present the cross-talk effect, i.e., they detect ICA for the analysis of sEMGs, demonstrating that the
electrical activities from several muscles simultaneously Independent Components (ICs) are more strongly
in action. coupled with ongoing brain rhythms (EEG) than the

sEMGs recordings of individual muscles [McKeown
M.J., 2000a]. The ICA model can be used to provide a

3. Sensorimotor integration of sub-movements useful starting point for the rigorous definition of a sub-
movement upon which more elaborate models can be

A growing body of evidence suggests created. Consider numerous simultaneous sEMG
movements which appear smooth to the naked eye are recordings deriving from several electrodes distributed
actually composed of the temporal and spatial over many muscles during a coordinated cortically-
superposition of discrete sub-movements precisely controlled movement. If we model the sEMGs recorded
recruited and coordinated by the central nervous system from each electrode to be the linear superposition of
[Harris C.M., 1998]. However, the spatial and temporal activity from different group of muscles (possibly
overlap of sub-movements has generally made it encoded with CPGs) that tend to co-activate, the, the goal
impossible, with the common computational tools is to estimate the cortical modulation of the commonly
available to the neuroscientist, to isolate the effects of influenced muscles. A single sub-movement is defined as
individual sub-movements [Sejnowski T.J., 1998]. m(t) = U C(t), t=t0--tn, where m is a column vector,

Extensive computational expertise is required to with mj representing the muscle electrical activity
adequately interpret the data gleaned from the contributing to the jth electrode as a function of time, U
experiments. Detection of non-stationarity in the sEMG is a stationary column vector representing the relative
and kinematic variables is necessary to detect the onset weighting that a given cortical command gives to the
of temporally overlapping sub-movements. We different muscle areas, and C(t) is the unknown scalar
investigate the information-theoretic considerations of neural command over time. If several, e.g. p, sub-
channel capacity and bandwidth as important movements during a complex movement are temporally
determinants in the selection and sensorimotor (and spatially) overlapping, the linear combination of
integration of individual sub-movements. mk(tk) outputs M(t), the total muscle electrical activity

over the duration of the whole movement and Mj is the
electrical activity recorded from the jth electrode, Ck

4. Computational Models incorporating Sub- represents the relative activation of the kth sub-
movements movement by an independent cortical command, and the

matrix Uj* has as its columns, Uk, the vectors defining
Some computational approaches have attempted the different sub-movements. If we assume that for a

to model reaching movements as incorporating sub- given time-period, say T, a constant number of sub-
movements; however, they have not addressed many of movements, c, are simultaneously active, thus, we have
the unanswered questions regarding the characteristics of M = UC, where M is the matrix of the electrical activity,
sub-movements. Others have attempted to model C is the matrix of presumed independent cortical
reaching movements without considering sub- commands, and U is a matrix defining the sub-
movements at all. Smoothness, an empirical observation movements. The goal is then, given the recordings from
of motor movements, has often used as a cost function to the electrodes, and not knowing U, to estimate the
optimise the models. Rather than define sub-movements different cortical influences, C. If the Ck are assumed to
on the basis of the velocity profiles, in this project the be independent and c can be estimated, this is possible
sub-movements are defined on the basis of muscular through the ICA.
activity. Empirically, experienced physical therapists
describe "efficiency" of motor movements as subjects
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5. Neural models of ICA x=A.s (2)

Independent Component Analysis (ICA) can then the mixing and unmixing matrixes are related by the

easily be introduced as a straightforward evolution of the following equation:

well-known statistical technique referred to as Principal W = A (3)

Component Analysis (PCA). Nevertheless, it is also - -

possible to investigate the main ideas behind ICA from
the perspectives of both learning/neural systems and
signal processing (blind source separation). A good 5.1 The ICA based on the information maximization

definition of ICA can be found in [Lee T.W., 1998]: ICA by using a neuralnetwork approach

is a method for finding a linear non-orthogonal co-
ordinate system in any multivariate data. The directions Bell and Sejnowski derived a self-organizing

of the axes of this co-ordinate system are determined by learning algorithm to maximize the information

both the second and higher order statistics of the original transferred to a NN of non-linear units. The non-linear

data. The goal is to perform a linear transformation transfer functions pick up the higher-order moments of

which makes the resulting variables as statistically the statistical distribution of the input data, and,

independent from each other as possible. In contrast to moreover, they are able to reduce the redundancy in the

correlation-based transformations such as PCA, ICA not output data. Higher-order methods use information on

only decorrelates the signals, through second-order the distribution of x that is not contained in the

statistics, but also reduces higher-order statistical covariance matrix. This fact becomes meaningful when
dependencies. Blind source separation by ICA has the distribution of x is non Gaussian, since it is possible

received attention because of its potential applications in to assume that the covariance matrix of a zero mean
signal processing. Here, the goal is to recover Gaussian variable, contains the whole information

independent sources given only sensor observation that carried by this variable. By defining the differential
are unknown linear mixtures of the latent (unobserved), entropy for a continuous random variable x as:
possibly independent, source signals. In parallel to blind H(x)=-rf(X). ln[f, (x)]. dx (4)
source separation researches, the ICA emerged within the
framework of unsupervised learning. In particular,
Linsker [Linsker R.] firstly proposed an algorithm based when fx(x) is the probability density function of the
on information theory that was then used to maximize the considered variable. The conditional differential entropy
mutual information between the inputs and the outputs of is defined as follows:
a NN. Each neuron of an "output' layer should be able to H(y Ixx) = f(x)rff(yIx).ln(y(Ilx)].-dy.dx (5)
encode features that are as statistically independent as
possible from other neurons over another ensemble of
"inputs". The statistical independence of the outputs It represents to the variations that occur in the
implies that the multivariate probability density function information carried by y when x is observed. Finally the
(pdf) of the outputs can be factorised as a product of mutual information between two variables x and y is
marginal pdf s. Bell and Sejnowski [Bell A.J., 1995], given by.
derived stochastic gradient learning rules for achieving M x, y) = H(x) - H(x I y)= H(y) - H(y I X) (6)
the prescribed maximization. The same Authors put the
problem in terms of an information-theoretic framework This quantity measures the information that is
and demonstrated the separation and deconvolulion of added to x when y is observed, or to y when x is
linearly mixed sources [Bell A.J., 1996]. observed. The mutual information of(x, y) zeroes, when

Among the various approaches proposed in the and only when the variables are independent The Bell-
literature to implement the ICA, the approach used by Sejnowski approach is based on the use of a NN able to
McKeown [Lee T.W., 1999] is the algorithm developed minimize the mutual information between the input x and
by Bell and Sejnowski [Bell A.J., 1995] which is based the output X of the neural network where y are the
on an Infomax NN, where a self-organizing algorithm is independent components. If we suppose to have noise-
used to maximize the information transferred in a free input data, y can be obtained from x_ by a
network of non-linear units. The general framework of deterministic manner: in this case, H(yx_) assumes its
ICA is now simply described as the blind separation lowest value (-oo). The problem in this case is that the
problem, typically introduced by the "cocktail party density functions of the unknown components cannot be
problem": we have n different sources §j (that is, the computed, and therefore the H(ylx) is difficult to be
speakers i= 1,...,n) and m different linear mixtures x (that estimated. This drawback can be overcame by taking into
is, the microphones j=l,...,m). By referring to x as the account that, if y can be computed from x by an
matrix of the observed signals, and as s the matrix of the invertible continuous deterministic mapping, the
independent components, the matrix W, called unmixing maximization of Ml(x_[) corresponds to maximize the
matrix, satisfies the following property: entropy of the outputs. In the NN case, we have to

s=W.x (1) maximize the H(y) with respect to the network
= ý = parameters w. If we have just one input x and one output

or, by defining the mixing matrix A as: y, if the mapping from x to y is defined as y=g(x), and if
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g(e) has a unique inverse, then the probability density each independent component The architecture of the
function of y can be computed as: neural network is depicted in Figure 1.

-1 (7)
fy (Y)= f, WX ._.•:ZI 2 ,•)

The differential entropy of y is given by: ,
Hýv)=-E[ha(fy))]=-f f Iv)n d~y= (8O..U.. , ,1/

To maximize the differential entropy, we need Figure 1- Architecture of the Infomax Neural Network
to maximize just the first term. This maximization is
carried out by a stochastic gradient ascent learning
rule, where the update step can be computed as: 5.2 ICA-NN scheme based on contrast functions

Aw(c9 a Iy • The Infomax NN described in the previous
w 0 i Section has some limitations, both on the kind of source

signals pdf and in the computational load. In this Section
If g(e) becomes the logistic transfer function, of we will describe a different NN scheme to extract ICs

the scaled and translated input that is most suitable to solve our problem. The proposed
1 (10) NN is also useful to cope with time-varying mixtures

Y 1 + e-(w-----) [Koivunen V., 2001].
The goal of ICA is to make a transform into a

the update term can be rewritten as the update step for signal space in which the signals are statistically
the weight w: independent. Sometimes independence can be attained,

Aw 1 '1-2y (11) especially in blind source separation in which the
-w 0C Y original signals are linear mixtures of independent source

and the update step for the bias weight can be computed components and the goal of ICA is to invert the unknown

as: mixing operation. Even when independence is not
2(12) possible, the ICA transformation produces useful

Aw c 1-2y ( component signals that are non-Gaussian. The ICA
In the most general multivariate case, we have: allows us to approximately take into account all higher-

.2.,. "- ,xX2,'".,XN) (13) order correlations and make the signals truly
f,. (YY2 YN)Jindependent. Higher order statistics are needed to
where J , is the transformation Jacobian. The update step determine ICA expansion. In the framework of NNs, thefor the matrix weight becomes: ICA structure is that of a linear network that after

AW C W-T + I - 2y). xT (14) learning is of the purely feed-forward type. However,
- during learning non-linearity must be used for separating

where 1 is a unit column vector and the update step for sources. We assume here that we have a set of noisy
the bias weight vector can be computed as: linear mixtures representing the observed signal. By

Awo occl-2y (15) denoting with xk = [Xk (1) .... xk(M)]T the M-
dimensional kth data vector corresponding to the

The input data are measurements of N different measurements carried out at discrete point, we can write
input sources, and, therefore, they can be referred to as a the ICA signal model in the vector form:
matrix X, where the i-th column represents the i-th
sample of the each source. The inputs of the neural + . (19)
network are b=W'x , and x. are called sphered data. The
sphered data are computed by zero-meaning the input Here s is the source vector consisting of the
data x and by sphering these data with the following independent signal components (sources), s(i), i=l, N, A
matrix operation: = [a(1), ... , a(N)] is a constant MxN "mixing matrix"

x = S.x (16) whose columns a(i) are the basis vectors of ICA, and nk

x = Ex] (17) denotes possible corrupting noise, often omitted, because
=0 - it is not possible to distinguish noise from source signals.

(18) The source separation aim is to determine s, knowing
S = 2(,E[x0 . X~r] only x. Several assumptions must be made in ICA, in= =0  particular, only one of the source signals is allowed to

where S is called sphering matrix, and it is used to speed have a Gaussian marginal distribution. Typically, the
the convergence. The infomax NN estimate the matrix y, basis vectors a(i) are normalized to unit length and
where the i-th column represents the i-th sample of the arranged according to the powers E [L (i) 2] in a similar

way as in standard PCA. In PCA, the data model has the
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same form, but the coefficient sk(i) are required to have of the eigenvectors of x and D is the diagonal matrix of
sequentially maximal powers (variances), and the basis eigenvalues that produces a starting point for an iterative
vectors _a(i) are constrained to be mutually orthonormal. process that finds vector W. The learning rule is:
Usually, the basis vectors of ICA are not mutually
orthogonal, in order to better characterize the data. The W (k+1) = E [y g(_(k)T y) - g (_(k)T ) W(k)], (21)
ICA allows to determine a sparse encoding of the input
vector, where histograms show a high probability of a where g(.) is the hyperbolic tangent. After finding W, the
large response as well as of no response at all. The code IC's can be found by linear combination y = W y v and
increases first-order redundancy (histograms) by the mixing matrix A by A = E D 112 W.
decreasing higher-order redundancy. This redundancy The use of ICA network allows us to determine
transformation can be described in terms of kurtosis, that the ICA separating matrix.
is defined by (E[.] denotes expectation):

k[s(i) 4] = E[s(i) 4]-3[E[s(i)2]] 2. (20) 6. Experimental EMG data processing results

The separation capability of various algorithms The ICA-NN scheme proposed in the previous
depends on the kurtosis [Ref, Kar]. It is possible to Section has been used to extract ICs from sEMG
realize the estimation procedure by using a feed-forward recordings. In what follows, we will report some results
scheme. The inputs of the NN are the M components of that have been achieved in this study. The following
the vector x. In the hidden layer, we have N nodes. The Table reports the correspondence between the
first layer of weights carry out a MxN whitening (and placements of sEMG electrodes and the related muscles.
compression) of the input vector, After this, the sources Figure 3 reports an example of the signal acquired during
are separated by means of an orthonormal matrix (WTw about 2 s of exercise (corresponding to pointing the
= I N) that the NN should learn. The ICA network, firstly monitor of a computer with alternatively the right and the
proposed in [Karhunen J., 1997] is shown in Figure 2. left hand). Figure 4 reports the time-course of the 6& ICs,
Non-linearity (i.e., hyperbolic tangent function) must be that appears to be mostly correlated with the 40 sEMG
used in learning the separating matrix. The learning sensor.
algorithm here used is described in [Karhunen J., 1997]
and can be summarized as follows: whitening of the
original data x by y = L) -1/2 E T X, where E is the matrix

y =WV V x
T as possil! ............................ ...................... Com ponents of y as independent

K ' •Weight matrix O minimizes the

16Hidden 5 Hidden 5 Hidden 16 Hidden SE error
odsndsnodes nodes E{IIx=-Q Y112

XVW Orthonormal
T WV = I_) separation matrix

that the network should learn

Whilening Scpirafling Estitnaled ICA

natrix matrix basis matrix

Fig. 2- The Neural Network feed-forward scheme for computing ICA.

1 SPec 9 DBic 6 MTrp 14 PWFI
Superior Pectoralis Distal Bicep Medial Trapezius Proximal Wrist Flexors

2 IPec 10 PTri 7 LTrp 15 DWF1
Inferior Pectoralis Proximal Tricep Lateral Trapezius Distal Wrist Flexors

3 LPec 11 DTri 8 PBic 16 APB
Lateral Pectoralis Distal Tricep Proximal Bicep Abductor Pollicus Brevis

4 LDel 12 PWEx
Lateral Deltoid Proximal Wrist Table 1: Correspondence between the electrode locations

Extensors and the investigated muscles
5 ADel 13 DWEx

Anterior Deltoid Distal Wrist Extensors
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Each ICs consists of a temporally independent interpreting the activity of each individual muscles in
waveform and a spatial distribution over the electrodes. isolation [Jung T.P., 2001 ].
The spatial distributions of the electrodes is shown on a There are practical advantages of separating the
cartoon body. The diagram has been obtained by making sEMG signals into temporally ICs, namely, the ICs are
use of the MATLAB Toolbox for Electrophysiological less susceptible to changes in position of the electrodes,
Data Analysis, Version 3.2 (S. Makeig, et al, available and therefore more suitable for serially monitoring
online, http://www.cnl.salk.edu/scott/ica.html). performance; the ICs are, in addition, more likely to

The electrodes are positioned according to Table correspond to brain activations [Jung T.P., 2001], by
1. The colouring of each electrodes is proportional to the looking for common cortical influences in the muscle
particular IC contributes to the electrode's raw recording. activity.
In the example, it is shown that the 6'h ICs mostly As previously mentioned, the experiment
contributes to the 4th electrode reading. Note the described in the present Section have been carried out by
unmixing of the related components, basically activating using a Neural Network scheme to implement ICA. It is,
just one electrode. Figures 6 to 8 reports the same signals of course, possible, to use different techniques to
for the 16'h electrode and the 16d' ICs. In this case, the implement ICA, however, it could be demonstrated that
16" component mainly activates the same electrode. the use of a NN approach is equivalent to other

Measuring the ICs of sEMG will provide a more approaches, like maximum likelihood estimation. The
reliable and robust measure of motor performance than NN scheme is most suitable to achieve hardware

implementation.

011 013 0~ 18 1,2 1N,4 1 ,.

Figure 3: Raw EMG recording from the 4th electrode
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Figure 4: Time-course of the 6th extracted ICs
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4000

S 04 V 0, 06 TOi

Figure 6: Raw EMG recording from the 16th electrode

Figure 7: Time-course of the 16th extracted ICs
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Figure 8: Spatial distribution of the activations corresponding to the 16'h ICs

7. Treatment of non-stationarity The sequence h (k) is the so-called refinement
filter. The wavelet basis functions are constructed by

The extraction of ICs is based on the assumption dyadic dilation (index j) and translation (index k) of the
of stationarity among different trials of the same mother wavelet:
experiment. In the practice, for such sEMG data, this is a
hardly acceptable assumption. We would like now to = 2"j/(x/2- -k) (24)
propose a time-frequency approach to the analysis of Yjk
sEMG data (or their ICs counterparts) that allows to cope The sequences h and g can be selected such that
with signal non-stationarity. The sEMG is indeed non- {Y• 1Pjk).z2 constitutes an orthonormal basis of L2, the
stationary as its statistical properties change over time. sfu .T o
The MUAPs (Motor Unit Action Potentials) are space of finite energy functions. This orthogonality
transients that exist for a short period of time: for that permits the wavelet coefficients dj (k) V= , (- ,) and
reason, time-frequency methods are useful to
characterize the localized frequency content of each the approximation coefficients c1 (k)=(f, =( 1 of any
MUAP. The use of a time-frequency representation also function f(x) to be obtained by inner product with the
allows, in principle, to detect the onset of sub- corresponding basis functions. In practice, the
movements, according to what we explained in the decomposition is only carried out over a finite number of
previous Sections. We have carried out the wavelet scales J. The wavelet transform with a depth J is then
analysis in both the time domain of sEMG and of the given by:
ICs, in order to show that this kind of analysis should be (25)
carried out on the original space (the IC space is f(x) = ." d1 (k)vlJk + . c•,-(k)Oa .
generated by already making a stationarity assumption). k

The wavelet transform also guarantees to

possibility of not specifying in advance the key signal In the present study, we shall use the WT in
features and the optimal basis functions needed to project order to derive a set of features that can reveal singularity
the signal in order to highlight the features. An of the signal (corresponding to the onset of activity of
orthogonal wavelet transform is characterized by two single muscles) and to detect the precursors of the non-
functionsI: stationarity. A set of features derived from the inspection

1) the scaling function, of the scale-dilation plane have been used as input vector

of an auto-associative NN that is able to alarm the user
q5(x) = -,2 eZ h(k)q.(2x - k) (22) about modification of the energy content of the spectrum.

The features are extracted by considering the
and 2) its associated wavelet: correspondence between singularities of a function and

local maxima of its wavelet transform. A singularity
x(23) corresponds to pairs of modulus maxima across several

V/ x) -52E,, g(k)0(2x - k) (23) scales. Feature extraction is accomplished by the
where g(k) is a suitable weighting sequence (function). computation of the singularity degree (peakiness), i.e.,
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the local Lipschitz regularity, which is estimated from different compression scheme could be used, like the
the wavelet coefficients decay [Mallat S., 1992, Arkidis Singular Value Decomposition. The bottleneck layer is,
N.S., 2002]. in principle, able to work as principal component

Figures 9 and 10 reports the amplitude sEMG extractor, but the idea here is to build a compressed
signal for channel 40', and the wavelet transform obtained representation which is deliberately redundant The
by using Daubechies 1 and 4 mother wavelet. The reconstruction error could be sub-optimal with respect to
modulus maxima plots have been drawn and a different schemes, but optimality comes at the expenses
thresholding operator is used in order to reduce the of quite low fault tolerance. Finally, the MLP NN can be
number of effective wavelet coefficients needed to implemented easily in a FPGA hardware chip. A typical
represent the original functions. Once the features have case of non-stationarity is the onset of fatigue. The
been extracted by inspecting the modulus maxima plot, Figure 11 describes how the activation intervals [Micera
we can use the corresponding nonzero coefficients in S., 2001] of the muscles during the exercise cycle are
order to predict the raising of non stationarity. A MLP determined starting from the ICs.
NN with an input layer of corresponding size acts as a The standard approach to determine on-off
bottleneck network (the output size is the same of the activation patterns is to process each epoch by means of
input one, while the hidden layer size is considerably a double threshold statistical detector [Bonato P., 1998,
reduced). The NN fed by the wavelet coefficients Balestra G., 2001] to obtain the muscle detection
computes the estimation of the corresponding wavelet intervals. We have compared the results achieved by our
coefficients at the output: a reconstruction error is method with the one described and we have found an
computed. If the error overcomes a prescribed threshold improvement of about 20% in the performance.
level, the non-stationarity signal is activated and the
following trials are used to compute a novel matrix (ICs)
weights. The use of a MLP-NN is not obliged to ensure
accuracy or success in the reconstruction; for example, a
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Figure 9: The wavelet transform of the 4th sEMG channel (mother wavelet, Daubechies 1): the raw
data recording (top), the plot of the absolute values of the WT coefficients (middle) and the modulus
maxima extracted (bottom). A thresholding is applied to suppress WM that are not of interest. White
colour corresponds to high value of the coefficients. If one uses a wavelet with one vanishing moment,
then the bottom plot corresponds to the maxima of the smoothed first-order derivative of the function.
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Figure 1 0: The wavelet transform of the 4th sEMG channel (mother wavelet, Daubechies 4): the raw
data recording (top), the plot of the absolute values of the WT coefficients (middle) and the modulus
maxima extracted (bottom). White colour corresponds to high value of the coefficients. A wavelet
function with 4 vanishing moments is used.
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Figure 10 : The wavdetermination of the activation intervals (the wavelet envelope is used).
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8. Conclusion IEEE Engineering in Medicine and Biology, Special
Issue on Monitoring Muscles in Motion, Vol. 20,

The paper proposed the use of some NNs to No.6, Nov/Dec 2001.
process experimental electrical data derived from non- Jung T.P., Makeig S., Lee T.W., McKeown M.J., Brown
invasive sEMG experiments. The original (raw) data G., Bell A.J. and Sejnowski T.J, Independent
have been analysed by a neural IC processor aiming to Component Analysis of Biomedical Signals - The
obtain signals that can be easily correlated to cortical 2nd Int'l Workshop on Independent Component
activity. The assumption of stationarity is then relaxed in Analysis and Signal Separation, 2000.
order to cope with time-varying mixing systems, more Jung T.P., Makeig S., McKeown M.J., Bell A.J., Lee
adherent to the biophysical problem at hand. An auto- T.W., Sejnowski T.J., Imaging brain dynamics
associative NN exploits the features obtained by wavelet using independent component analysis. P IEEE.
transforming the raw data for making a quick and 89(7): 1107-22,2001
efficient prediction of non-stationarity. The results we Karhunen J., Oja E., et al, A class of neural networks for
have shown can be considered just as preliminary to independent component ana~ysis, IEEE Trans. on
solve the difficult problem. Neural Networks, Vol. 8, N. 3, pp.486-504, 1997.

Koivunen V., Enescu M., Oja E., Adaptive algorithm for
blind separation from noisy time-varying mixtures,
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